

Disruption and California The Agriculture Sector What's Going On?

Robert Tse USDA CA Rural Development Redwood City, CA June 29, 2016

Global Demographic Drivers Global Ag Challenges Global Ag Opportunities

World Population Reaches 7 Billion October 31, 2011 Projected to Reach 9.3 Billion in 2050

World Becomes More Urban May 23, 2007

World Became Majority Urban

Rise of the Global Middle Class

By 2030,

50% of world population will be middle income

(\$6-30,000 PPP)

Source: Goldman Sachs Economic Research

Global Demand Drivers to 2050

- Global Population Increase
- Rapid Urbanization
- Growing Middle Class
- Climate Change Impact

- Rising Food Prices Rising Global Trade of Food
- Rising Demand for Protein, Fruits and Vegetables
- Agriculture Adapts to Climate Change

Global Agriculture Challenges

- Limited availability of more arable land for production without high environmental costs
- Double Productivity on farm land already in production
- Adapt to Global Climate Change

Meet Local Disruptive Events

Disruptive Events

DROUGHT

Invasive Species

Shrinking Farm Labor Pool

Disruptive Event

U.S. Drought Monitor California

June 21, 2016

(Released Thursday, Jun. 23, 2016) Valid 8 a.m. EDT

Drought Conditions (Percent Area)

			None	C
99% of St	tate	Current	0.00	1
		ast Week 6142016	0.00	1
is in Drough	ught 🏻	lonths Ago 322/2018	1.16	9
	Cale	Start of endar Year 12282015	0.00	1
	W	Start of Ater Year 929/2015	0.14	ę
	One	e Year Ago 423/2015	0.14	ş
	Inter	nsity:		
		D0 Abnormally (
		D1 Moderate Dro		ht
	-	D2 Severe D	rought	
	The L Loca for fo	Drought Monik I conditions m precast statem	lor focu nay varj nenta.	18 y.
	Auti Eric U.S.	hor: Luebehus Departme	en ent of	Д
	3	USDA	1000	(Del Ho Cal

г D0-D4 D1-D4 D2-D4 D3-D4 D4 100.00 83.59 59.02 42.80 21.04 100.00 83.59 59.02 42.80 21.04 Ū 98.84 91.55 72.86 55.31 34.74 6 100.00 97.33 87.55 69.07 44.84 0 99.86 97.33 92.36 71.08 46.00 71.08 48.73 99.86 98.71 94.59

> D3Extreme Drought D4 Exceptional Drought

pht ocuises on broad-scale conditions. ary. See accompanying text summary

of Agriculture

http://droughtmonitor.unl.edu/

INVASIVE SPECIES & NATIVES GONE WILD

Invasive Pests and Diseases

USDA

United States Department of Agriculture

Asian Citrus Psyllid Cooperative Program California, Arizona, Baja California, and Sonora

Asian Citrus Psyllid Spreads Across California

Disruptive Event

Source: Charlton and Taylor (2014)

Impact on Farming

- ✓ Produce More with Less Labor
- New plant hybrids, and animal breeds
- New agricultural production practices
- Greater efficiency in agricultural utilization of water

Climate Change

NOAA

CLIMATE CHANGE POLAR ICE CAP MELTS

NOAA GFDL CM2.1 Model Simulation

Aug Sept Oct Avg Sea Ice Concentration

NOAA Geophysical Fluid Dynamics Laboratory

Global Impact on Ag

Note: The coloring in the figure shows the projected percentage change in yields of 11 major crops (wheat, rice, maize, millet, field pea, sugar beet, sweet potato, soybean, groundnut, sunflower, and rapeseed) from 2046 to 2055, compared with 1996–2005. Large negative yield impacts are projected in many areas that are highly dependent on agriculture. *World Development Report 2010*

Disruptive Events ✓ DROUGHT ✓ CLIMATE CHANGE ✓ INVASIVE SPECIES & **NATIVES GONE WILD** ✓ FARM LABOR

✓ DISRUPTIVE TECHNOLOGY

Disruptive Events

Disruptive Technology

New Ag Technology

New Data Driven Technology Production Side of Agriculture

United States Department of Agriculture Rural Development

Disruptive Events

Test kit detects foodborne pathogens By Jenni Spinner 20, 09-Jul-2013

Variable Rate Irrigation

Steve Jobs

Technology

DISRUPTIVE

ERSON

Wireless Soil Sensors

The IOT Challenge with Farmers

Tools to Implement Variability Management

- Mobile Device P.C. w/GPS
- Internet Connectivity
- Soil Moisture Sensors
- Valve and pump automation
- Qualified Integrator

Optional

- UAV (Drone)

ww.h2o-optimizer.com

CLIMATE CHANGE

INNOVATION

New Ag

Precision Growing

90% less water use than conventional and greenhouse cultivation 80% less fertilizer than conventional cultivation Automatic record keeping for optimization 34% less inventory loss through simpler logistics Discover a whole new business model for agriculture

Agriculture in a Box

Poulsen weeder

Company: F Poulsen Engineering ApS, Hvalso, Denmark Website: http://www.visionweeding.com Product: ROBOVATOR thermal and/or hydraulic weeder

Test kit detects foodborne pathogens

By Jenni Spinner 🗳, 09-Jul-2013

21st Century Agriculture Technology Innovation

Variable Rate Irrigation

Drip Irrigation

Precision Input Application

Wireless Soil Sensors

Multispectral Imagery (satellite and aircraft)

New Agriculture Cycle

Disruptive Challenges and Shortening The Timeline >Natural Disaster >Lifestyle Trends **Resource Scarcity Favorable Policy** Drought Climate Change Invasive species & Natives gone wild **Farm Labor**

Technology

California Statewide Ag Hackathon July 15th - 17th, 2016 Davis and Sacramento, CA

Final Pitches at:

Hackathon at:

University of **California** Agriculture and Natural Resources

www.apps-for-ag.com

Thank you

